Logo Universiteit Utrecht

Jobs posted by Universiteit Utrecht

Mimir provides the automated job management of jobs on job boards for Universiteit Utrecht.

Latest jobs

Jurist Contractmanagement

Als jurist heb je een veelzijdige functie in een breed team. Je werkt nauw samen met een collega contractmanagement, de subsidieadviseurs binnen het Research Support Office, en met projectleiders of onderzoekers bij het opstellen of beoordelen van nieuwe en het onderhouden van bestaande juridische contracten. Dit doe je vanuit jouw professionele expertise en binnen de universitaire beleidskaders. Daarbij houd je zowel de juridische aspecten als de belangen van de onderzoekers en de organisatie goed voor ogen. In deze rol coördineer je het gehele contractproces, van ontvangst tot definitieve ondertekening.

Werkzaamheden

  • Je houdt je bezig met het opstellen, beoordelen en uitonderhandelen van onderzoekscontracten, consortiumovereenkomsten en andere onderzoeksgerelateerde overeenkomsten, inclusief het signaleren van juridische aandachtspunten en risico’s.
  • Je adviseert onderzoekers en subsidieadviseurs van het Research Support Office over alle contractuele en juridische aspecten van onderzoeksprojecten, en verstrekt juridisch advies aan de decaan ter ondersteuning van de besluitvorming.
  • Je coördineert het volledige contractproces en neemt daarbij zelfstandig én besluitvaardig de benodigde beslissingen.
  • Je bewaakt de voortgang van contracten van start tot afronding, en draagt bij aan de ontwikkeling van templates en procedures ter bevordering van een efficiënt contractbeheer binnen het Research Support Office.
  • Je bent een inhoudelijke sparringpartner voor je directe collega’s
  • In universiteitsverband/facultair overstijgend draag je bij aan het universitaire juridische beleid.

0 applications
0 views


20-11-2025 Universiteit Utrecht
PhD: Unravelling Clogging Mechanisms in Porous and Fractured Rocks

Clogging in geological formations poses critical challenges for subsurface applications from geothermal energy to CO₂ and hydrogen storage. While individual clogging mechanisms have been studied extensively, the dynamic interplay between physical particle deposition, chemical precipitation, and deformation-induced particle remobilisation remains poorly understood. These processes vary fundamentally across rock types – from porous sedimentary to fractured crystalline systems, with volcanic and altered crystalline rocks presenting unique intermediate cases. Recent advances in operando micro-computed tomography (µCT) enable unprecedented real-time visualisation of these processes, yet systematic investigation across diverse rock types and integration with predictive models remains lacking.

In this PhD study, you will be performing experiments and numerical simulations to understand and predict the clogging evolution in a range of geological media by:

  1. Quantifying physical and chemical clogging dynamics across a spectrum of rock types (porous sedimentary, porous volcanic, altered crystalline, and fractured crystalline rocks) using 4D µCT imaging
  2. Establishing the role of deformation in particle remobilisation and preferential flow path creation that controls clogging patterns
  3. Developing predictive digital rock physics and permeability evolution models from µCT data using machine learning and computational tools (PuMA/CHFEM/MOOSE) validated against experimental observations
  4. Bridging scales from pore-level processes (µm) to sample-scale behaviour (cm) through integrated experimental-numerical approaches

To achieve this, you will be doing in-situ experiments using our state-of-the-art in-house Zeiss Versa 610 µCT-scanner equipped with custom flow-through cells to capture clogging evolution. In addition, we will apply for beamtime at a synchrotron facility across Europe for critical experiments requiring very high imaging rates or ultra-high resolution. These experiments will be coupled with large- and small-scale flow-through experiments, using capabilities available at the High Pressure and Temperature Laboratory (in collaboration with Dr Suzanne Hangx) and the Porous Media Lab (in collaboration with Dr Amir Raoof) at the Department of Earth Sciences, to examine particle mobilisation thresholds, and how stress-induced deformation remobilises particles, creates new flow pathways, and redistributes clogging zones. Your experimental data and observations will be used to upscale from pore-scale physics to continuum behaviour.

If you are thrilled to dive deep into the world of real-time imaging for sustainable energy solutions, this is a great opportunity for you! This position offers you the chance to explore your passion for understanding the impact of subsurface activities and boost your career with high-impact research in a field that is rapidly growing.

The main supervisor of the study is Dr Roberto Rizzo.

Training
A personalised training programme will be set up reflecting your training needs and career objectives. About 20% of your time will be dedicated to this training component, which includes following courses and/or workshops (some of which are mandatory), as well as training on the job in assisting in the bachelor’s and master’s degrees programmes of the department at Utrecht University. Through interactions with the various scientists and stakeholders, you will be exposed to potential career paths in both academia and industry, helping you guide your future.

0 applications
0 views


20-11-2025 Universiteit Utrecht
PhD position on Novel experimental turbidity currents in the TurbiFlume

More than 10,000 submarine canyons connect the continents to the deep ocean. These canyons are the conduits for transport of land-derived materials to the ocean floor in avalanche-like events called turbidity currents. Turbidity currents transport enormous amounts of sediment and Particulate Organic Carbon (POC) and bury this in deposits below the ocean floor. They additionally convey abundant nutrients and oxygenated water masses, which together with the POC (as food) support conditions for abundant life at unexpected depths in the absence of light for photosynthesis. Submarine canyons are also called the ‘human connection to the deep sea (Dissanayaka et al., 2023)’. Unfortunately, this connection brings land-derived pollutants (microplastics, pesticides, pharmaceuticals) into the very heart of these ecodiverse hotspots, making them vulnerable to far-field human interference. While this general knowledge is established, the processes of transport and burial during turbidity current events remain poorly understood.

Previous experimental research into turbidity currents has been fundamental in generating the basic understanding of how they shape deep marine environments. Real world monitoring of turbidity currents is challenging and risky due to the difficulty of reaching submarine canyons and the sometimes violent nature of turbidity current events. But despite these challenges, a flurry of recent successes in real world monitoring has resulted in various additional insights and hypotheses that have not been tested or reproduced in the laboratory yet. This includes aspects and phenomena such as the role of dense frontal cells and basal layers, substrate erosion, flow ignition, the distinction between high- and low-density flows, and effect of submarine canyon dynamics such as tides, internal waves, nepheloid layers, and up- and downwelling. This body of work suggests that conventional experimental structures are not sufficient to fully understand the dynamics of turbidity current processes in natural environments. The TurbiFlume set-up in the Earth Simulation Laboratory of Utrecht University has been designed and implemented to overcome some of the limitations that have prevented experimental contributions to these newly emerged themes. This project will utilize the TurbiFlume set-up to establish a new framework for experimental turbidity currents that goes beyond previous studies. The results will form a platform for future research that quantifies the role of submarine canyons as conveyors of sediments, carbon, pollutants, nutrients, oxygen, and heat from the continental shelves to the deep ocean.

Training
A personalised training programme will be set up reflecting your training needs and career objectives. About 20% of your time will be dedicated to this training component, which includes following courses and/or workshops (some of which are mandatory), as well as training on the job in assisting in the bachelor’s and master’s degrees programmes of the department at Utrecht University.

1 application
0 views


19-11-2025 Universiteit Utrecht
PhD position on Land-ocean interaction across the K/Pg boundary

The Cretaceous/Paleogene (K/Pg) boundary marks a period of major environmental perturbation and one of the biggest five mass extinctions in Earth history. Intriguingly, a shift in facies occurs in many sedimentary sections worldwide, in both marine and terrestrial settings. Why environments changed and remained different for more than a million years following the Chicxulub asteroid impact, the end-Cretaceous mass extinction and Deccan Trap volcanism, is not resolved. This project aims to investigate a land-ocean transect, to better constrain the position of the boundary, and to connect observed changes on land with changes in the marine realm during the recovery of ecosystems in the early Paleogene.

Marine and continental sections in Spain record sharp and lasting changes in environmental conditions following the asteroid impact. This research will address the questions:

  • Does lithological change coincide with the K/Pg boundary and what mechanisms led to the shift in lithologies?
  • How do terrestrial and marine environments recover from the end-Cretaceous mass extinction?

The research will initially focus on improving age control by magnetostratigraphy and chemostratigraphy, after which the project can follow different routes, including but not limited to sedimentology, orbital forcing and palynology, based on preliminary results and research interests of the candidate.

Training
A personalised training programme will be set up reflecting your training needs and career objectives. About 20% of your time will be dedicated to this training component, which includes following courses and/or workshops (some of which are mandatory), as well as training on the job in assisting in the bachelor’s and master’s degrees programmes of the department at Utrecht University.

2 applications
0 views


19-11-2025 Universiteit Utrecht
Senior fondsenwerver vermogensfondsen en familiestichtingen

Als Senior fondsenwerver vermogensfondsen en stichtingen speel jij een sleutelrol in het realiseren van onze fondsenwervingsdoelstellingen. Je bouwt aan relaties met vooralsnog nationale vermogensfondsen en stichtingen en zorgt dat wetenschappelijk onderzoek, het behoud van Utrechts academisch erfgoed of bijzondere initiatieven van en voor Utrechtse studenten werkelijkheid worden.

Onze visie is dat het doorgeven van kennis en kansen essentieel is voor een betere toekomst. Wij geloven dat generaties elkaar daarin kunnen helpen. We halen geld op om mensen en projecten bij elkaar te brengen om studenten en onderzoekers bij de Universiteit Utrecht vooruit te helpen. Zo dragen we bij aan de ontwikkeling van kritisch denkende wereldburgers en een veerkrachtige samenleving. Dit alles samengevat in onze purpose: Generous for Generations.

Je werkt samen met onderzoekers, collega’s van fondsenwerving en partners binnen de universiteit. Jij vertaalt de ambities van de universiteit naar inspirerende voorstellen die aansluiten bij de doelstellingen van fondsen en stichtingen.

Je houdt je bezig met:

  • het ontwikkelen en uitvoeren van een strategie voor relatiemanagement en werving bij vermogensfondsen en stichtingen;
  • het onderhouden en uitbreiden van een portfolio van relaties en het aangaan van nieuwe partnerschappen;
  • het identificeren van kansrijke projecten binnen de universiteit;
  • het begeleiden van onderzoekers bij het opstellen van projectvoorstellen en rapportages;
  • het coördineren van voortgang en rapportage richting schenkers (stewardship);
  • het realiseren van de beoogde opbrengsten en rapporteren over de voortgang.

Je maakt deel uit van een klein en betrokken team binnen het Universiteitsfonds en werkt nauw samen met faculteiten en andere universitaire onderdelen. Je bent de rechterhand van de directeur met wie je samen de wereld van vermogensfondsen verkent en veroverent.

0 applications
0 views


19-11-2025 Universiteit Utrecht